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Aeronautical structures are commonly assembled with bolted joints in which friction

phenomena, in combination with slapping in the joint, provide damping on the dynamic

behavior. Some models, mostly nonlinear, have consequently been developed and the

harmonic balance method (HBM) is adapted to compute nonlinear response functions in

solve equations linking Fourier coefficients. One specific HBM feature is that response

accuracy improves as the number of harmonics increases, at the expense of larger

computational time. Thus this paper presents an original adaptive HBM which adjusts

the number of retained harmonics for a given precision and for each frequency value.

The new proposed algorithm is based on the observation of the relative variation of an

approximate strain energy for two consecutive numbers of harmonics. The developed

criterion takes the advantage of being calculated from Fourier coefficients avoiding time

integration and is also expressed in a condensation case. However, the convergence of

the strain energy has to be smooth on tested harmonics and this constitutes a limitation

of the method. Condensation and continuation methods are used to accelerate

calculation. An application case is selected to illustrate the efficiency of the method

and is composed of an asymmetrical two cantilever beam system linked by a bolted

joint represented by a nonlinear LuGre model. The practice of adaptive HBM shows that,

for a given value of the criterion, the number of harmonics increases on resonances

indicating that nonlinear effects are predominant. For each frequency value,

convergence of approximate strain energy is observed. Emergence of third and fifth

harmonics is noticed near resonances both on vibratory responses and on approximate

strain energy. Parametric studies are carried out by varying the excitation force

amplitude and the threshold value of the adaptive algorithm. Maximal amplitudes of

vibration and frequency response functions are plotted for three different points of the

structure. Nonlinear effects become more predominant for higher force amplitudes and

consequently the number of retained harmonics is increased.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamics of mechanical structures is strongly influenced by the presence of riveted or bolted joints in the structure.
Indeed structural joints generate energy dissipation through the complex relative motion between two contacting surfaces,
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commonly referred as frictional slip. Additionally for higher level of excitation, slapping may be encountered. Frictional slip
may be analyzed by considering an interface behavior divided in two cases: micro-slip where part of the interface is
slipping; and macro-slip where all the interface slips. Then the frictional energy dissipation observed in the slip zone is
responsible for the vibration damping attributed to joints [1]. Gaul et al. [2] showed that this damping may be larger than
material damping and Beards [3] mentioned that up to 90 percent of the total system damping might be provided by the
joints. Thorough reviews about damping in joints may be found in the works of Ungar [4], Gaul et al. [2] and more recently
Ibrahim et al. [5].

A better prediction of this damping effect is now an important objective for many aeronautical companies and various
complex industrial structures incorporating bolted joints have been investigated [6–9]. Crocombe et al. [7] established a
relationship between energy dissipated in a joint and the transverse excitation force using a 3D FE model of a bolted joint
and then used this relationship in conjunction with the simulation of a FE model of a satellite to estimate the energy
dissipated in the joints. In the work of Caignot [9], a micro scale model of bolted joints quantifies in a first step the joint
dissipation and an equivalent modal damping is deduced in a second step to perform dynamic analysis of the whole
studied structure.

These approaches perform a complex contact analysis giving an insight into the distribution and amount of friction on
the interfaces but neglect nonlinear effects in the global dynamic behavior of the assembled bolted structure. They need
detailed models, often impractical for dynamic analyses of large structures. Hence constitutive models which use a number
of degrees of freedom adapted to structural dynamics may be a suitable and computationally efficient alternative. These
models can be divided into lumped models and thin layer element theories [10]. In lumped models, the effect of joint is
considered to be concentrated at a single point and the joint model has no dimension. Several models have been proposed:
the Valanis model [11], the elasto-slip model [2], the LuGre model [2], the Iwan model [1], the Bouc–Wen model [12],
models with Jenkins elements [12] and models integrating a cubic stiffness [13]. The second category, based on thin layer
elements, is represented as an element with physical dimensions and specific force–displacement relation. Ahmadian et al.
[10] developed a generic joint element based on a thin layer element approach and Song et al. [14] developed an adjusted
Iwan beam element incorporating an Iwan model to simulate the dynamics of beam structures.

Most of these models are nonlinear and require specific methods to compute nonlinear frequency response functions. In
order to compute responses to forced excitation, one of the first methods is time integration. Oldfield et al. [12] applied
time integration on a bolted structure to simulate hysteresis loops using a Jenkins element model and a Bouc–Wen model.
Other applications on a two beam system were encountered in the works of Gaul et al. [11] and Miller et al. [15]. Time
integration may be inefficient on lightly damped structures because the transient response may take hundreds of forcing
periods at the expense of calculation time and disc storage size. Other alternatives like perturbation methods and the
Krylov and Bogoliubov method remain limited to a few degrees of freedom. Heller et al. [16] applied the
Krylov–Bogoliubov method on a nonlinear system in order to determine equivalent modal parameters and not to
compute periodic responses.

In the frequency domain, the harmonic balance method (HBM) is able to compute periodic responses of nonlinear
systems. The basics are to develop the unknown response as a truncated Fourier series and to solve equations linking
Fourier coefficients. First mechanical applications can be encountered in the works of Pierre et al. [17] on a single degree of
freedom dry friction damped system and Ferri et al. [18] on a beam incorporating dry friction. Then a further development
of the HBM, named alternating frequency time domain method [19], numerically evaluates the Fourier transform of local
nonlinearities of the model and does not require to analytically describe nonlinear terms. More recently, other approaches
have been proposed, notably the constrained harmonic balance method [20] which computes solutions for periodic
autonomous systems. For dynamic analyses of bolted joints, Gaul et al. [2] used harmonic balance method for the
calculation of an equivalent stiffness and viscous damping in an elasto-slip model. Ren et al. [21] proposed a general
technique for identifying the dynamic properties of nonlinear joints using dynamic test data and used multi-harmonic
balance method to identify parameters for a friction joint. These two developments compute hysteresis loops and not
periodic responses. The work of Ahmadian et al. [10] developed a nonlinear generic element formulation for bolted joints
and used a cubic nonlinear stiffness to represent softening nonlinear effects. Then frequency response curves of the system
are calculated with the HBM allowing to include these curves in a minimization procedure in order to identify parameters
of the joint. Only prime harmonics were considered due to experimental considerations.

One specific HBM feature is that response accuracy improves as the number of harmonics in the truncated Fourier series
increases, at the expense of larger computational time. Therefore only harmonics which lead to a significant contribution
on dynamic response must be taken into account for a given precision, and their number can strongly vary on a frequency
interval.

This key point has been highlighted for bolted joint dynamics by Ouyang et al. [22] who studied an experimental two
beam bolted system excited at resonance. By increasing importance of friction in the joints (through an increase of the
excitation amplitude), measured hysteresis loops became distorted and superharmonics appeared in the frequency spectra
of the responses, showing the importance of considering higher order terms in the Fourier development of the response.
Only odd harmonics were present suggesting the possibility to use a cubic stiffness in the bolted joint model [10,13] and to
only consider odd harmonics in the harmonic balance method, usual practice for dry friction system [17].

Even though, up to now, no theoretical tool can determine which harmonics are predominant for a nonlinear system.
The present study pursues this investigation by developing a criterion allowing to limit the number of retained harmonics.
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An approximate strain energy with Fourier coefficients is calculated and its saturation is monitored. This new criterion,
based on Fourier coefficients, does not require time integration and may be easily estimated. In order to illustrate the
efficiency of the method on a nonlinear mechanical system, an asymmetrical two cantilever beam system linked by a
bolted joint is modelled as application case. The joint model was inspired by the adjusted Iwan beam element (AIBE)
developed by Song [14]. However, a LuGre model was preferred to an Iwan model present in the work of Song for
implementation simplicity. Moreover, formulation of HBM has consequently been adapted to integrate LuGre model
internal variables. Analysis of frequency response functions and detailed monitoring of criterion evolution help to assess
the validity of this approach. In order to accelerate calculation, a condensation procedure on nonlinear degrees of freedom
is performed by reformulating the HBM equations. Furthermore, criterion has been expressed in this case and compared
with case without condensation.

This paper is divided into three main sections. The first one deals with the HBM formulation, details condensation and
criterion expression. Secondly, the studied system is presented and HBM adaptation to LuGre model is detailed. Finally,
result analyses highlight the effect of the harmonic selection process on frequency response functions and on the number
of retained harmonics, and a parametric study on the influence of the excitation force is discussed.

2. HBM formulation

2.1. General formulation

We consider a discrete mechanical system with nddl degrees of freedoms (dofs) described with its nddl�nddl mass
matrix M, stiffness matrix K and damping matrix D). An external periodic force FLðO,tÞ is applied to the system with an
angular frequency O. System nonlinearities are considered as a nonlinear force FNLðX, _X ,O,tÞ which depends on degrees of
freedom displacements X, velocities _X , angular frequency O and time t. The global force FðX, _X ,O,tÞ applied on the system
may be divided in two parts, the linear external force FLðO,tÞ and the nonlinear force FNLðX, _X ,O,tÞ. The governing equation
of motion may be written as

M €XþD _XþKX ¼ FðX, _X ,O,tÞ ¼ FLðO,tÞþFNLðX, _X ,O,tÞ (1)

First, we assume a periodic response X(t), which allows to develop the solution as a Fourier series. This development is
theoretically infinite so a truncation in the following form is needed:

XðtÞ ¼ B0þ
Xm

k ¼ 1

Aksin
k

n
Ot
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þBkcos

k

n
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½B0 A1 B1 . . . Ak Bk . . . �T

XðtÞ ¼ TðtÞZ (2)

where I is the nddl�nddl identity matrix, Z ¼ ½B0 A1 B1 . . . Ak Bk . . . �T is the (2m+1)nddl�1 vector containing Fourier
coefficients, m is the number of harmonics retained for the truncation, n is an integer used to represent possible
subharmonics, and TðtÞ ¼ ½I sinðOn tÞI cosðOn tÞI . . . sinðknOtÞI cosðknOtÞI . . .� is the nddl� (2m+1)nddl matrix containing
trigonometric functions.

The same work is then accomplished for the global force F:

FðX, _X ,O,tÞ ¼ C0þ
Xm

k ¼ 1

Sksin
k

nOt

� �
þCkcos

k

nOt
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FðX, _X ,O,tÞ ¼ TðtÞ½C0 S1 C1 . . . Sk Ck . . . �T

FðX, _X ,O,tÞ ¼ TðtÞb (3)

In order to compute velocities and accelerations, we define a frequential derivative operator:

=¼ diagð0nddl�nddl,=1, . . . ,=mÞ with =k ¼
k

n
O

0 �I

I 0

� �
(4)

Thus we may write:

_X ðtÞ ¼ TðtÞ=Z

€X ðtÞ ¼ TðtÞ=2Z (5)

By replacing Eqs. (2) and (5) into Eq. (1), one obtains:

MTðtÞ=2ZþDTðtÞ=ZþKTðtÞZ ¼ TðtÞb (6)
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Considering that for a nddl�nddl matrix W and a (2m+1)nddl �1 vector Y:

WTðtÞY ¼ TðtÞNWY (7)

with NW ¼ diagðW,W, . . . Þ ð2mþ 1Þnddl
�ð2mþ 1Þnddl

.
Eq. (6) becomes

TðtÞNM=2ZþTðtÞND=ZþTðtÞNKZ ¼ TðtÞb

TðtÞðNM=2
þND=þNKÞZ ¼ TðtÞb (8)

Time dependency may be suppressed and a frequency algebraic equation linking Fourier coefficient may be obtained using
a Galerkin method which is a projection of the equation on trigonometric functions. Indeed these trigonometric functions
define a scalar product:

/f ,gS¼
1

T

Z T

0
f ðtÞgðtÞdt (9)

Thus we may write

1

T

Z T

0

T TðtÞTðtÞdt¼
1

2

2I 0

I

I

0 &

2
66664

3
77775¼ L ð2mþ 1Þnddl

�ð2mþ 1Þnddl
(10)

Applying this scalar product on Eq. (8) leads to
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L is a diagonal matrix so Eq. (11) may be simplified into a ð2mþ1Þ � nddl equation system:

AZ ¼ b with A¼NM=2
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A may be expressed in a simpler manner
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(13)

This system is equivalent of finding zeros of a function H : Rð2mþ1Þ�nddl-Rð2�mþ1Þ�nddl:

HðZÞ ¼ AðOÞZ�bðZ,OÞ (14)

We note that b is dependent on Z and O because b corresponds to the Fourier coefficients of FðX, _X ,O,tÞ. In the case where
no analytical expression may be written between b and Z, an evaluation of the approximate temporal terms XðtÞ and _X ðtÞ is
carried out from an initial value Z ¼ T

½B0A1B1 . . .AmBm�:

Z¼)
FFT

XðtÞ ¼ B0þ
Xm

k ¼ 1

Aksin
k

nOt

� �
þBkcos

k

nOt
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(15)

It also allows to evaluate temporarily the nonlinear term FNLðX, _X ,O,tÞ and then to deduce Fourier coefficients by a FFT

procedure

FNLðX, _X ,O,tÞ¼)
FFT

bNLðZ,OÞ ¼ T
½CNL

0 SNL
1 CNL

1 . . . SNL
m CNL

m � (16)
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2.2. Condensation

An additional step can reduce the number of equations to solve. It consists in expressing Fourier coefficients of dofs on
which no nonlinearity is applied (called linear dofs) functions of Fourier coefficients of remaining dofs (called nonlinear
dofs) and of Fourier coefficients of linear and nonlinear forces:

First, dofs are reorganized into p linear dofs and q nonlinear dofs using a boolean transition matrix P:

X ¼ P
Xp

Xq

" #
¼ ½Pp Pq�

Xp

Xq

" #
(17)

where Pp is a nddl � p matrix containing the first p columns of P, Pp contains the last q columns of P.
Using the same decomposition for Fourier coefficients, Zp ¼ ½B0p A1p B1p . . . Amp Bmp�

T (idem for Zq), the following result
is obtained:

Z ¼ ½NPp
NPq �

Zp

Zq

" #
(18)

Note that NPp
and NPq

are respectively (2m+1)nddl� (2m+1)p and (2m+1)nddl� (2m+1)q matrices. NP and P are both
boolean matrices too and T NPNP ¼ I.

Furthermore, the same property is observed for the vector b so that Eq. (12) becomes

T NPp
ANPp

T NPp
ANPq

T NPq
ANPp

T NPq
ANPq

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fpp Fpq

Fqp Fqq

" #
Zp

Zq

" #
¼

bp

bq

" #
(19)

Zp may be eliminated, and then the system is equivalent of finding zeros of a function Hq : R
ð2mþ1Þ�q-Rð2�mþ1Þ�q:

HqðZqÞ ¼ ðFqq�FqpF�1
pp FpqÞZq�ðbq�FqpF�1

pp bpÞ (20)

If the decomposition is chosen so that no force (linear or nonlinear) is applied on the p linear dofs, then bp=0
and:

HqðZqÞ ¼AqðOÞZq�bqðZq,OÞ (21)

with AqðOÞ ¼ Fqq�FqpF�1
pp Fpq.

Finally Fourier coefficients of p linear dofs Zp may be obtained using the relation

Zp ¼ F�1
pp ðbp�FpqZqÞ (22)

2.3. Prediction and correction

For a given frequency O, the problem is equivalent to solving a function ~Hð ~x,OÞ : Rk
�R-Rk with ~H ¼H, ~x ¼ Z and

k=nddl or with ~H ¼Hq, ~x ¼ Zq and k=q in the condensation case.
When a simulation has to be done on a frequency band ½O1;O2�, continuation methods have to be applied to follow the

solutions and plot the curve ~Hð ~x,OÞ ¼ 0. These methods are based on one or more previous points ½ð ~xn,OnÞ,ð ~xn�1,On�1Þ, . . .� of
the response curve from which a prediction ð ~xð0Þnþ1,Oð0Þnþ1Þ of the next point ð ~xnþ1,Onþ1Þ is made. Obviously, the closer to the
next solution the prediction is, the smaller the number of iterations will be. In order to be able to compute
solutions when turning points are present, a curvilinear abscissa s is used. Then, a correction procedure is applied on the
prediction, in order to reach after some iterations the next point ð ~xnþ1,Onþ1Þ. In this study no branch points are considered.

Then the main prediction and correction methods are presented. The notation y¼
T
½ ~xO� 2 Rkþ1 will be used in the following.

Prediction methods: Three prediction methods are presented and illustrated in Fig. 1(a) for y 2 R2. A given increment Ds

of the curvilinear abscissa is used to calculate the prediction.
Secant method: the prediction is on the line defined by the two previous points ~yn, ~yn�1:

y0
nþ1 ¼ ynþDs

yn�yn�1

Jyn�yn�1J
(23)

Tangent method: the prediction is on the tangent to the curve at the previous point yn. The direction is given by a unit
vector t

!
tangent to the jacobian matrix Jy

~HðynÞ at the point yn so

yð0Þnþ1 ¼ ynþDs t
!

(24)

with Jy
~HðynÞ t

!
¼ 0 and det Jy

~H ðynÞ

T t
!

 !
40.
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Fig. 1. Prediction and correction methods.
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Lagrange polynomial method: the prediction is on a polynomial P of degree d which reaches the d+1 previous points
½ðyn,snÞ, . . . ,ðyn�d,sn�dÞ�. An analytical description of this polynomial may be easily written by using Lagrange polynomials:

PðsÞ ¼
Xn

i ¼ n�d

yi

Yn

j ¼ n�d
jai

s�sj

si�sj

0
@

1
A (25)

The prediction is then calculated by evaluating P for the abscissa snþDs:

yð0Þnþ1 ¼ PðsnþDsÞ (26)

Correction methods: We consider a prediction yð0Þnþ1 2 R
kþ1 of the next solution so the system is not square because the

function ~H offers only k equations. One component of y (often the parameter O) has to be fixed or one more equation is
added to the system. The correction methods are presented in Fig. 1(b). Correction on ~x and O are noted D ~x and DO.

Newton method: one component Onþ1 is fixed to the prediction value Oð0Þnþ1. Then the system is a square system which
can be solved by using a Newton–Raphson procedure. For the i th iteration, the corrected point is

yðiÞnþ1 ¼
~xðiÞnþ1þD ~x
Onþ1

" #
with D ~x ¼�J ~x ~Hð ~x

ðiÞ
nþ1,Onþ1Þ

~Hð ~xðiÞnþ1,Onþ1Þ (27)

Moore–Penrose method: the vector defined by two consecutive points yðiþ1Þ
nþ1 and yðiÞnþ1 is orthogonal to the kernel of the

jacobian matrix Jy
~HðyðiÞnþ1Þ of ~H to the point yðiÞnþ1. The Moore–Penrose matrix inverse defined as Wþ

¼
T WðWT WÞ�1 for

matrix W is used. The following expression is obtained:

yðiÞnþ1 ¼ yð0Þnþ1þ
D ~x
DO

� �
with

D ~x
DO

� �
¼�Jþy

~HðyðiÞnþ1Þ
~HðyðiÞnþ1Þ (28)

Adaptive step: If a step Ds used to make a prediction is too large, the number of iterations will be too time-consuming or the
solution may not be found. Furthermore, a too large step may lead to difficulties in the vicinity of turning points. So an
adaptive step is often appropriate and different methods are available. A widespread tool is to consider the previous
number of iterations and to reduce the step when solver takes more iterations than an optimal chosen value. A larger step
is chosen when the number of iterations is lower than a minimal value too. Many numerical criteria may be developed to
limit the step variation.

2.4. Proposed criterion

For a given excitation frequency of the system, no theoretical tool exists to determine which harmonics are really
predominant. Furthermore the number of necessary harmonics can strongly vary for the studied frequency interval. Some
numerical tools have been developed, in particular the work of Laxalde [23] who developed a method based on the degree
of approximation of the nonlinearity. This criterion does not take into account the global system behavior and may not be
adapted when linear forces are predominant in comparison to nonlinear forces. Consequently the criterion presented in
this section focuses on approximate system strain energy and on its evolution for different numbers of harmonics in the
response.
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Approximate strain energy: First, for a response developed in a Fourier series, the system strain energy U may be
expressed as

U ¼ 1
2

T X ðtÞKXðtÞ ¼ 1
2

T Z T TðtÞTðtÞNKZ (29)

We may suppress the time dependency by calculating the mean value on one period:

/US¼ 1
2

T ZLNKZ (30)

Approximate strain energy for a condensation: When a reduction on q nonlinear dofs is used, the strain energy expression
must be adapted in order to be computed only from Fourier coefficients Zq of the q nonlinear dofs and to avoid the time
consuming step which consists in calculating linear Fourier coefficients Zp.

First some properties must be noted.
For a condensation procedure, the boolean transition matrix P is used. System matrices M (respectively D and K) may be

rearranged to correspond to the dofs division ½Xp Xq�
T by using the following conversion ~M ¼ T PMP (respectively ~D and ~K).

Similarly to F in Eq. (19), ~M may be divided in four blocks:

~Mkl ¼
T PkMPl with ðk,lÞ 2 fp,qg (31)

Furthermore, for a r� s matrix W and a s� t matrix V, NWNV ¼NWV and T NW ¼NT W
.

Then, if the matrix diagð0k�k,=1, . . . ,=mÞ with identity matrix as Ik� k is named =k, the following formula may be
obtained:

=NPk
¼NPk

=k with k 2 fp,qg (32)

Finally, the matrix Lk is a (2m+1)k� (2m+1)k matrix with identity matrix as Ik� k and k 2 fp,qg.
For the computation of criterion in the reduction case, Eq. (30) becomes

/US¼
1

2
T ZLNKZ

/US¼
1

2
½
T Zp

T Zq�

T NPp

T NPq

2
4

3
5LNK½NPp

NPq
�

Zp

Zq

" #

/US¼
1

2
½
T Zp

T Zq�
Lp 0

0 Lq

" #
NPpKPp

NPpKPq

NPqKPp
NPqKPq

" #
Zp

Zq

" #

/US¼
1

2
ð
T ZpLpN ~Kpp

Zpþ
T ZpLpN ~Kpq

Zqþ
T ZqLqN ~Kqp

Zpþ
T ZqLqN ~Kqq

ZqÞ (33)

Then, a more explicit form of matrix F (Eq. (19)) must be established

Fkl ¼
T NPk

ANPl
(34)

Introducing the expression of matrix A of Eq. (12) leads to

Fkl ¼
T NPk
ðNM=2

þND=þNKÞNPl

Fkl ¼N ~M kl
=2

l þN ~Dkl
=lþN ~K kl

(35)

with ðk,lÞ 2 fp,qg. For simplicity, linear and nonlinear Fourier coefficients are supposed to be linked in a static case (O¼ 0)
so that =l ¼ 0l�l.

By using this assumption in Eq. (22), Zp may be expressed as

Zp ¼N�1
~K pp
ðbp�N ~K pq

ZqÞ (36)

If the decomposition is chosen so that no force (linear or nonlinear) is applied on the p linear dofs, then bp=0 and

Zp ¼�N�1
~K pp

N ~K pq
Zq (37)

By replacing Eq. (37) into Eq. (33):

/US¼ 1
2ð

T Zq
T
K ~pqN ~Kpq

T N ~K
�1
pp

LpN ~Kpp
N ~K

�1

pp

N ~Kpq
Zqþ

T Zq
T N ~Kpq

T N ~K
�1
pp

LpN ~Kpq
Zqþ

T ZqLqN ~Kqp
N ~K

�1

pp

N ~Kpq
Zqþ

T ZqLqN ~Kqq
ZqÞ

/US¼ 1
2

T ZqLqN ~Kqq�
T ~Kqp

~K
�1
pp
~Kpq

Zq (38)

This equation is very similar to Eq. (30) obtained for the nonreduced case. Matrix ~Kqq�
T ~Kqp

~K
�1

pp
~Kpq acts as reduced stiffness

matrix on the q nonlinear dofs.
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Fig. 2. Algorithm for criterion e.
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Criterion e: The criterion e developed in this section is computed for a given frequency and the first resolution is
performed for one harmonic. Then the relative difference between two consecutive values of strain energy is evaluated.
The first value is obtained for m harmonics and the second for m+1 harmonics. The increase is stopped when e becomes
less than a threshold chosen by user. Algorithm is detailed in Fig. 2.

As matrices L and Lq are diagonal constant block matrices and as algorithm starts for one harmonic, studying strain
energy saturation is equivalent to studying saturation of an approximate quantity:

/ÛS¼ T ZNKZ without condensation

/ÛS¼ T ZqN ~Kqq�
T ~Kqp

~K
�1

pp
~Kpq

Zq with condensation (39)

Finally, when the convergence rate of the strain energy turns out to be nonsmooth, the method may stop before saturation.
For example, for dry friction systems, only odd harmonics appear. However, as shown later, this drawback may be avoided
removing all even harmonics in the calculation. For other cases, for example when the 1st and 5th harmonics responds, this
drawback constitutes a limitation of the method.

3. Application case

3.1. Two beam system and joint model

A two cantilever beam system linked by a bolted joint is considered for simulations in order to illustrate the selection
process of harmonics and is shown in Fig. 3(a). Beams are made of aluminum 7075 Al and the section is rectangular
(5.1 cm�2.5 cm). The two beams have different lengths (34.7 and 84.7 cm) in order to avoid a symmetric behavior.

Beams are modelled with Abaqus software with two dimensional B21 beam elements which use a Timoshenko
formulation. 10 (respectively 25) elements are used for the 34.7 cm (respectively 84.7 cm) beam. Due to axial forces,
geometric nonlinearities may appear in this clamped-clamped beam system for high level of excitation and may be
simultaneously present with joint nonlinearity. However this model is focused on localized nonlinearities and study has
been limited to joint nonlinearities. For further details on geometric nonlinearities, the reader can refer to Sze et al. [24]
who applied HBM on a nonlinear beam.

Bolted joint is represented with a 3.5 cm long element described by a mass elementary matrix of a B21 beam element
and a nonlinear stiffness matrix considered as an external force. These external forces are the two moments M1 and M2 and
the two forces T1 and T2. A Rayleigh damping is calculated by using mass and stiffness matrices of a monolithic beam so
that damping has a value of 0.1 percent for frequencies of 0.24 and 1.14 kHz. These two frequencies correspond to the
second and fifth modes. The value of 0.1 percent is representative of real structures and remains sufficiently low to keep a
significative nonlinearity impact. Indeed, a material damping increase leads to reduce vibration amplitudes and
consequently higher order harmonics amplitudes so adaptive harmonic balance method will retain a smaller number of
harmonics.

Nonlinear stiffness model of bolted joint presented in Fig. 3(b) is largely inspired by a previous work of Song [14] and
uses a model called adjusted LuGre beam element (ALBE) by analogy with Song’s work. Frictional slip and slapping
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Fig. 3. Application case (a) two beam system and (b) bolted joint model.

V. Jaumouillé et al. / Journal of Sound and Vibration 329 (2010) 4048–40674056
constitutes the two main nonlinear phenomena involved in the joint interface [10]. However, for the sake of simplicity,
slapping which can lead to higher order harmonics has not been considered in this study. Frictional slip is here considered
with a nonlinear model integrating a LuGre model leading to odd harmonics. As discussed in Section 2.4, even harmonics
have to be removed in the HBM calculation so that smooth convergence rate of strain energy is observed on only odd
harmonics. The basic idea is to replace stiffnesses of a linear beam element by a parallel combination of a LuGre model and
a residual stiffness ka,i,i 2 1,2 characteristic of a bolted joint [11]. The element has two rotational dofs R 1 and R 2 and two
translational dofs T 1 and T 2. h and L are respectively section height and element length.

Spring elongations D1 and D2 have to be considered to express relation between nonlinear force FNL,ALBE and element
dofs:

D1 ¼
L

2
ðR1þR2ÞþðT1þT2Þ and D2 ¼

h

2
ðR1�R2Þ (40)

Consequently each LuGre force fLuGre,i,i 2 1,2 depends on Di elongation but also on internal variable value zi and its
derivative _zi . It may be written as

fLuGre,iðDi, _Di ,zi,
_zi Þ ¼ s0iDiþs1i

_ziþa2i
_Di (41)

_zi ¼
_Di�

s0i

a0iþa1ie�ð
_Di =v0iÞ

2 j
_Di jzi (42)

The combination of one LuGre model and one spring provides a force which takes the following form:

fiðDi, _Di ,zi,
_zi Þ ¼ fLuGre,iðDi, _Di ,zi,

_zi Þþka,iDi (43)

Stiffness decrease during microslip regimes may be represented by using a coefficient gi 2 ½0;1� which links the residual
stiffness ka,i, the LuGre model stiffness parameter s0i and the equivalent linear element stiffness ki. The relative equations
are s0i ¼ ð1�giÞki and ka,i ¼ giki.

Forces F1, F2 and resulting moments M1, M2 may be expressed as

F1

M1

F2

M2

2
6664

3
7775¼

f1ðD1, _D1 ,z1, _z1 Þ

L

2
f1ðD1, _D1 ,z1, _z1 Þþ

h

2
f2ðD2, _D2 ,z2, _z2 Þ

�f1ðD1, _D1 ,z1, _z1 Þ

L

2
f1ðD1, _D1 ,z1, _z1 Þ�

h

2
f2ðD2, _D2 ,z2, _z2 Þ

2
666666664

3
777777775

(44)

Thus from Eq. (40) forces FNL,ALBE may be written as a function of ALBE dofs:

FNL,ALBE

T1

R1

T2

R2

2
66664

3
77775,

_T1

R1

T2

R2

2
66664

3
77775,

z1

z2

" #
,

_z1

z2

" #0
BBBB@

1
CCCCA¼

F1

M1

F2

M2

2
6664

3
7775 (45)
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The two equivalent linear element stiffnesses ki are obtained by the following relations:

k1 ¼ 12
EI

L3
¼ 1:43� 106 N=mm and k2 ¼ 4

EI

Lh2
¼ 8:92� 105 N=mm (46)

Other parameters are deduced by analogy with Shiryayev’s work [25], namely g1 ¼ g2 ¼ 0:1078, a01 ¼ a02 ¼ 81:9 N,
s11 ¼ s12 ¼ a11 ¼ a12 ¼ a21 ¼ a22 ¼ 0. Finally s01 ¼ 1:27� 106 N=mm, s02 ¼ 7:96� 105 N=mm, ka,1 ¼ 1:55� 105 N=mm,
ka,2 ¼ 9:62� 104 N=mm.

Then the system is excited with a harmonic excitation FL of 42 N with a pulsation O. Load is applied on the longest beam
on translational dof 31. By using formulation introduced in Eq. (1), one may write the governing equation of motion to
which two equations have to be added. These additional equations describe LuGre model internal variables z1,z2 evolution

M €XþD _XþKX ¼ FLðO,tÞ�FNL,ALBE

X
_X

� �
,
z1

z2

" #
,

_z1

_z2

" #
,O,t

 !
(47)

_zi ¼
_Di�

s0i

a0iþa1ie�ð
_Di =v0iÞ

2 j
_Di jzi for i 2 f1,2g (48)

3.2. Adaptation of HBM formulation to LuGre model

In the studied case, two equations are added to the equation of motion and integrate nonlinear terms. Thus an
adaptation of HBM formulation becomes necessary. To do so, the two internal variables z1 and z2 are developed as a Fourier
series in the same way as X. By inserting the truncature ziðtÞ ¼ TðtÞZzi

into Eq. (48), the same Galerkin method is applied on
the resulting equation and one obtains

0¼ _zi�
_Di�

s0i

a0iþa1ie�ð
_Di =v0iÞ

2 j
_Di jzi

� �

0¼ TðtÞ=Zzi
�TðtÞbzi

ðZ,Zzi
,OÞ

0¼NI1�1
=Zzi
�bzi
ðZ,Zzi

,OÞ with i 2 f1,2g (49)

where bzi
ðZ,Zzi

,OÞ are Fourier coefficients of the nonlinear term.
Consequently the problem is equivalent to finding zeros of a function HHðZ,ZzÞ depending on Fourier coefficients of X

and z¼ ½z1 z2�. These coefficients are named Z and Zz ¼ ½Zz1
Zz2
�. HH is a function from Rð2mþ1Þ�ðnddlþ2Þ to Rð2�mþ1Þ�ðnddlþ2Þ.

HHðZ,ZzÞ ¼
HðZ,ZzÞ ¼AðOÞZ�bðZ,Zz, OÞ

CðZ,ZzÞ ¼NI2�2
=Zz�bzðZ,Zz, OÞ

( )
(50)

In case of condensation, we may define similarly a function HHqðZq,ZzÞ from Rð2mþ1Þ�ðqþ2Þ to Rð2�mþ1Þ�ðqþ2Þ:

HHqðZq,ZzÞ ¼
HqðZq,ZzÞ ¼AqðOÞZq�bqðZq,Zz, OÞ
CðZq,ZzÞ ¼NI2�2

=Zz�bq,zðZq,Zz, OÞ

( )
(51)

Finally, calculation of approximate strain energy /ÛS stay the same as Eqs. (33) and (38) because only Fourier coefficients
of physical dofs are used to quantify strain energy.

3.3. Results

In the following, shown results have been calculated on the frequency band, 0–2.3 kHz with a curvilinear abscissa and
an adaptive step to better describe resonance peaks. The Moore–Penrose method is used for correction at each iteration
and prediction is made with Lagrange polynomials of degree 2.

3.3.1. Nonlinear effects on dynamic responses

The maximal amplitude of vibration obtained for the linear case and for the two different nonlinear cases (one harmonic
case and adaptive case) are presented in Fig. 4(a–c) for the three dofs of the system. The 1 harmonic case refers here to the
classical HBM with one harmonic and does not refer to an adaptive algorithm. The first dof 7 is located on the left beam, the
second is a translational dof 19 corresponding to the R 1 dof of the ALBE model, and the third one is the dof 59 on the right
beam. Fig. 3(a) details the dof position on the system. The threshold value for the relative variation of the approximate
strain energy has been fixed to 3 percent and excitation force has an amplitude of 42 N. The linear case shows seven modes
on the studied frequency band. First nonlinearity effects are significant on the one harmonic response and result in two
phenomena: a reduction of resonance peak amplitudes which reflects the damping from the joint and a modal softening
which reflects the joint stiffness decrease. Thus some modes have important frequency shifts and even significant
distortions, notably the second, fifth and sixth modes. Frequency shifts and vibration amplitude reductions have the same
order of magnitude for all the considered dofs. Differences are observed between the 1 harmonic curve and the adaptive
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Fig. 4. Maximal amplitude of vibration for dofs 7(a, d), 19(d, e), 59(c, f) and for different linear and nonlinear cases: (a–c) over all the frequency band;

– – (linear, HBM 1 harm.); — (nonlinear, HBM 1 harm.); y (nonlinear, adaptive HBM) (d–f) zoom on 1.1 kHz resonance; — (nonlinear, HBM 1 harm.);

–.– (nonlinear, HBM 3 harm.); y (nonlinear, adaptive HBM); –.– (nonlinear, HBM 11 harm.)
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algorithm near resonances especially near the fifth and sixth modes where the shape of peaks differs. Far from resonance
peaks, adaptive algorithm give the same results as the 1 harmonic calculation.

Figs. 4(d–f) present a zoom on the 1.1 kHz resonance peak. Three nonlinear cases corresponding to a calculation with 1,
3 and 11 harmonics are compared with the adaptive HBM curve. Near the resonance, the adaptive HBM remains close to
the response with 11 harmonics. However, Fig. 5, which plots the number of harmonics over the whole frequency band,
shows that the number of harmonics reaches only 7 harmonics at most, revealing satisfying convergence of the method.
The number of used harmonics may vary from 1 to 11 for resonance peaks but only 1 harmonic is necessary elsewhere. It
shows that nonlinear phenomena are more pronounced on resonances. The maximum number of harmonics has been fixed
to 15 in this case.

Contribution of each harmonic (1st, 3rd and 5th harmonic) is shown in Fig. 6(a–c) by plotting the Fourier coefficient
modulus of the 1st, 3rd and 5th harmonics of the vibration response (JAk BkJ for harmonic k and for one dof into Eq. (2))
near the 1.1 kHz resonance peak. Analyses are still performed on the three dofs 7, 19, and 59. For the all three dofs, the 1st
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harmonic contribution remains larger than the 3rd and 5th harmonic contributions. However, analysis of the ratios 3rd/1st
(Fig. 6(d–f)) and 5th/1st (Fig. 6(g–i)) shows that importance of third and fifth harmonics increases near resonances and
may represent up to 10 percent for the third harmonic and up to 2 percent for the fifth harmonic. This observation may be
linked with the work of Ouyang et al. [22] who found emergence of third and fifth superharmonics which represented
about respectively 2 and 0.7 percent of the first harmonic. It may also be noted that third and fifth harmonics are less
predominant for dof 7 than for dofs 19 and 59.

A similar analysis on the approximate strain energy may be carried out by considering the contribution of the order k as
being the term 1

2
T ZkKZk. Zk refers here to the contribution of the order k to the Fourier coefficient vector Z of the vibration

response. Results are plotted in Fig. 7(a). Ratios 3rd/1st and 5th/1st are shown in Fig. 7(b, c). The same tendency that for
maximal amplitude of vibration with a peak near resonance frequencies is observed. Moreover, ratios have the same order
of magnitude with a maximum value of 12.5 percent for the third harmonic and of 2 percent for the fifth harmonic,
revealing that approximate strain energy behaves like a global indicator of each dof behavior.

3.3.2. Approximate strain energy saturation

Approximate strain energy /ÛS is presented over all the frequency band for three cases on Fig. 8(a). The first case
shows the shape of /ÛS for a linear case and a peak is observed for each resonance frequency. The other two cases
correspond to nonlinear calculations with one harmonic and with an adaptive number of harmonics. Nonlinear effects
decrease vibration amplitude of the system so that peaks on approximate strain energy are attenuated. As observed on the
maximal amplitude of vibration curves, peaks are shifted to the left. Moreover, differences between linear and nonlinear
cases are predominant near resonance frequencies and adaptive algorithm curve differs from one harmonic curve showing
an increase in the required number of harmonics. A zoom near the 1.1 kHz peak is made on Fig. 8(b) in order to show
convergence of the approximate strain energy quantity. Results are presented for 1, 3 and 11 harmonics and for the
adaptive case. Saturation is observed and adaptive case stays close to 11 harmonic curve even if no more than 9 harmonics
are used. Finally, it has to be noted that strain energy saturation is directly tested on odd harmonics due to the presence of
dry friction in the model and considered harmonics have a monotonous decrease of their amplitude. It constitutes a
limitation of the method which cannot deal with nonconsecutive predominant harmonics (for example system with 1, 3
and 11 predominant harmonics).

3.3.3. Influence of force excitation

First simulations were carried out with an excitation amplitude of 42 N. Influence of excitation force amplitude
on nonlinear effects is now investigated by varying amplitude with the values 6, 12, 24, 42, 66N. The maximal amplitude of
vibration is presented for the three considered dofs in Fig. 9. Zooms for the dof 19 are done for the first three
peaks in Fig. 9(a), for the fifth peak in Fig. 9(b) and for the seventh peak in Fig. 9(c). Responses are computed by using the
adaptive algorithm. First, we note that an increase in excitation amplitude results in larger vibration amplitudes, and this
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for all the three dofs. Then, the main notable nonlinear effect is an increase in modal softening for larger excitation
amplitude, as shown by left shifts of resonance peaks. It clearly shows a relationship between modal softening and
vibration amplitudes and this dependence is nonlinear as previously noticed by Ungar [4]. For larger amplitudes, this
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modal softening becomes less remarkable revealing the beginning of macro-slip and so the stabilization of the contact
stiffness (Fig. 10).

In order to compare the five nonlinear cases, frequency response functions (FRFs) are computed by dividing the
maximal amplitude of vibration by the excitation force amplitude for each frequency value. Results, which are very similar
for the three considered dofs, are presented in the particular case of the dof 19 in Fig. 11 for all the frequency band (a), for
the first three peaks (b), for the fifth peak (c) and for the seventh peak (d). First we note that modal softening is still
observed on resonance peaks and FRF maximal value decreases when excitation amplitude increases, reaching a
minimal value between the 24 and 42 N cases before a new increase for larger excitation amplitudes, except for the 2.2 kHz
peak where only a decrease is observed. Damping provided by joints is nonlinear and amplitude dependent and this
may explain this behavior. Ouyang et al. [22] observed the same phenomenon on the relation between energy dissipation
and excitation amplitude for a torsional joint and notices that, as excitation amplitude becomes larger, micro-slip
increases.

Excitation amplitude has an influence on nonlinear effects and consequently on the number of harmonics used by the
adaptive algorithm. Fig. 12(a–e) presents the number of obtained harmonics for the five different excitation values. A zoom
on the 1.1 kHz peak is done. For the lowest amplitude value, the adaptive HBM only requires one harmonic whereas for the
highest amplitude it uses nine harmonics. This increase is progressive and the frequency interval for which more than one
harmonic are needed widens. Left shifts of resonances are also noticeable because the frequency for which the number of
harmonics is maximum decreases as excitation amplitude becomes higher.
3.3.4. Influence of threshold value

Three threshold values of 1, 3, 5 percent have been tested for the adaptive algorithm. Fig. 13(a–c) shows the evolution of
the number of harmonics for the two peaks near 1.1 kHz and 1.5 kHz and for these three threshold values. Unsurprisingly,
an increase of the selected number of harmonics is observed when the threshold value decreases because more harmonics
are needed to reach this precision. Threshold value still remains a value to be determined by user.
3.3.5. Analysis of general and reduced criteria

An expression of approximate strain energy has been established in Eq. (38) when a condensation procedure is used in
order to avoid the calculation of linear Fourier coefficients for each step of the adaptive algorithm. This expression is based
on an assumption that linear and nonlinear Fourier coefficients are linked in a static case allowing to obtain an
approximate strain energy described only with the reduced stiffness matrix and not with mass and damping matrices. A
calculation with this reduced criteria has been carried out and the evolution of the approximate strain energy for the two
condensation and general cases are overlaid in Fig. 14(a). The two quantities clearly differ for frequencies higher than that
of the first resonance, invalidating the assumption used for the calculation of the strain energy. However Fig. 14(b), which
plots the evolution of the number of obtained harmonics when the reduced criterion is used, shows that the result of the
adaptive algorithm is very close to the result for the general case presented in Fig. 5. This may be explained by the fact that
the used criterion computes a relative quantity and observes strain energy saturation by evaluating a relative difference
between two consecutive values. The use of this criterion may represent an alternative for an adaptive HBM calculation.
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Fig. 9. Influence of excitation force amplitude on maximal amplitude of vibration for dofs 7(a), 19(b), 59(c): y 6 N; - - - 12 N; –.– 24 N; – – 42 N; — 66 N.

V. Jaumouillé et al. / Journal of Sound and Vibration 329 (2010) 4048–40674062
4. Conclusion

This article develops a new adaptive harmonic balance method which selects the number of harmonics at each
frequency value for a mechanical system integrating localized nonlinearities. A two beam system linked by a bolted joint is



ARTICLE IN PRESS

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
Excitation Frequency [kHz]

D
of

 1
9 

M
ax

 A
m

pl
itu

de
 [m

m
]

1 1.04 1.08 1.12 1.16 1.2
Excitation Frequency [kHz]

D
of

 1
9 

M
ax

 A
m

pl
itu

de
 [m

m
]

2.04 2.06 2.08 2.1 2.12 2.14

10−4

10−2

100

10−4

10−3

10−2

10−6

10−5

10−4

10−3

Excitation Frequency [kHz]

D
of

 1
9 

M
ax

 A
m

pl
itu

de
 [m

m
]
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chosen for application case. HBM formulation is combined with a reduction on nonlinear dofs of the system and a
simulation on a frequency band is carried out by using a prediction method based on Lagrange polynomials and a
correction method based on Newton and Moore–Penrose methods. In order to adapt the number of harmonics taken into
account at each frequency, an adaptive algorithm has been developed. The method computes an approximate strain energy
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from Fourier coefficients of the response and observes its saturation by evaluating the relative difference between two
consecutive cases corresponding to two different number of harmonics. This new criterion, based on Fourier coefficients,
does not require time integration and may be easily estimated. In a condensation case, criterion formulation is also
expressed. Furthermore geometric nonlinearity due to axial forces in the clamped-clamped beam are not taken into
account and nonlinear effects in the joint consider only frictional slip. Slapping is not modelled in this study. Slip in the
bolted joint element is represented by a LuGre model which leads to adapt the HBM formulation in order to develop
internal variables as Fourier series.

Results show that one harmonic is sufficient to give a satisfactory approximation of the response away from resonances
and is necessary to highlight nonlinear effects such as damping of resonance peaks and modal softening. Indeed the
dynamic behavior is strongly modified compared with the linear case. Moreover, adaptive HBM shows that, for a given
threshold value of the criterion, the number of harmonics may increase on resonances indicating that nonlinear effects are
predominant. The evolution of the approximate strain energy shows that a peak is observed near each resonance and
saturation of this quantity is noted when the number of harmonics increases. However, calculation is performed only on
odd harmonics due to dry friction leading to a smooth convergence rate of the strain energy on tested harmonics. This
condition constitutes a limitation of the method which cannot deal with nonconsecutive predominant harmonics (for
example system with predominant harmonics 1, 3 and 11). Analysis of each harmonic contribution notices the emergence
of third and fifth harmonics both on the response and on approximate strain energy near resonances, showing the global
characteristic of the criterion based on approximate strain energy. In order to obtain a wider range of harmonics and to
model a more physical bolted system, slapping and geometric nonlinearities could be considered for further work. A
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Fig. 12. Influence of excitation force amplitude on the number of harmonics, zoom on the 1.1 kHz resonance: (a) 6 N, (b) 12 N, (c) 24 N, (d) 42 N and
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coherent behavior is noticed when threshold value varies because more harmonics are needed to reach the given precision
when threshold value of the adaptive algorithm is decreased.

A parametric study is carried out by varying the excitation force amplitude. Vibration amplitude increases with higher
force amplitude because nonlinear effects, notably micro slip in the joint, become more pronounced. Modal softening and
damping depends on vibration amplitude and this dependency is nonlinear. Maximum of frequency response functions for
each resonance depends nonlinearly on excitation amplitude and may reach a minimum value for an intermediate
excitation amplitude. The number of needed harmonics becomes larger for increasing amplitudes underlining the
predominance of nonlinear effects.
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